Photoactivatable nanoCRISPR/Cas9 system

FM
SB RASOlga Semikolenova^{1,2}, Lubov Sakovina^{1,2}, Darya Kim^{1,2}, Ivan Vokhtantsev¹,
Sergey Novopashin³, Alya Venyaminova¹, Darya Novopashina^{1,2}
¹ Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia;
² Sirius University of Science and Technology, Sochi, Russia;
³ Institute of Thermophysics of SB RAS, Novosibirsk, Russia
E-mail:danov@niboch.nsc.ru

The design of nucleic acids constructions containing photosensitive residues or linkers permits to create spatiotemporal regulated system. Photocaged oligonucleotides have been used for photoactivation of CRISPR/Cas9 gene editing systems [1,2]. Here we proposed to immobilize crRNA through the photocleavable oligodeoxyribonucleotide (PC-DNA) on carbon nanoparticles (CNP) surface for the transfection of gene editing system components into the cell with subsequent activation of nanoCRISPR/Cas9 by UV-irradiation.

PC-DNA complementary to crRNA with two or three photocleavable linkers inside the chain and with pyrene residue at 3'-terminus have been synthesized.

Name	Sequences, 5'-3'
B20_PL	5'-TTTTTT- PL -ACAAA- PL -TTGAG- PL -TTATCC- Pyr
B30_PL	5'-GCTCTAAA- PL -ACTTTTT- PL -TACAAAT- PL -TGAGTTAT- Pyr
crRNA_Flu	5'-AUAACUCAAUUUGUAAAAAAGUUUUAGAGCUAUGCUGUUUUG- Flu
crRNA	5'-AUAACUCAAUUUGUAAAAAAGUUUUAGAGCUAUGCUGUUUUG

CGUUAUCAACUUGAAAAGUGGCAAGUCAGUC-

CEINP CrRNA Duplex formation Pyrene SWCNT and SWCNT-COOH

photocleavable linker
CEINP- carbon encapsulated iron nanoparticles
SWCNT – single walled carbon nanotube
SWCNT-COOH – carboxylated SWCNT

The stability of duplexes of pyrene modified B20_PL and B30_PL with crRNA were studied by gel-shift assay (K_d n.d. and 18,5 nmole) and thermal denaturation method (28,8 and 44,7 °C). The isotherms of crRNA/PC-DNA duplexes immobilization on the surfaces of CNP were obtained using methods of pyrene fluorescence quenching [3].

The immobilized crRNA were used in vitro as component of nanoCRISPR/Cas9 system. The possibility of nanoCRISPR/Cas9 system activation by UV-irradiation and effectiveness dsDNA cleavage was observed.

<u>Conditions:</u> 20 mM HEPES (pH 7,5), 100 mM KCl, 1 mM DTT, 0,5 mM Na₂EDTA, 2 mM MgCl₂, 5% glycerol. Cleavage of pBS2SKM by nanoCRISPR/Cas9 systems were performed at 37 °C during 1 h. Reaction mixture were analyzed in agarose gel-electrophoresis.

<u>Conditions</u>: 0,01M phosphate buffer (pH 7,5), oligonucleotide concentrations were 1·10⁻⁶M, detection of fluorescence at 380 nm.

The release of fluorescent crRNA upon UV-irradiation was examined by PAGE analysis. Time of half release was about 45 sec.

15% denaturating PAGE, oligonucleotide concentration B30_PL was 1·10⁻⁶ M, temperature was 25°C, wavelength of irradiation was 365 nm.

References:

Brown W. et al. ChemBioChem. 2021 V.22. N.1. N.63-72. doi: 10.1002/cbic.202000423.
Akmetova E.A. et al.Russ. J. Bioorg. Chem. 2021 V.47. N.2. P.495-503. doi: 10.1134/S1068162021020023
Apartsin E.K. et al. ACS Appl Mater Interfaces. 2014. V.6. N.3. 1454-1461. doi:10.1021/am4034729

The reported study was funded by RFBR, project number 19-34-51026.

(1) SWCNT + UV = UV = UV = UV = UV = UV = (4) duplex + UV = (5) SWCNT + (6) SWCNT + (7) CEINP = (8) duplex = (9) crRNA = (10) plasmid = (10

Effectiveness of dsDNA cleavage by nanoCRISPR/Cas9 system with activation by UVradiation was better than that by system without activation. nanoCRISPR/Cas9 system immobilized on CEINP showed the best result with low plasmid cleavage before UV-radiation and high plasmid cleavage after UV-radiation.

Cell penetration crRNA/PC-DNA/CNP complex in presence of lipofectamine was demonstrated by cytofluorometry. The possibility of PC-DNA photodegradation and crRNA released from CNP surface as well as nanoCRISPR/Cas9 system activation by UV-irradiation was demonstrated.

The proposed approach for the design of CNP-immobilized photoactivatable crRNA for cell transfection and UVactivation of CRISPR/Cas9 system is prospective for spatiotemporal gene editing.

COST ACTION CA 17140 NANO2CLINIC CANCER NANOMEDICINE - FROM THE BENCH TO THE BEDSIDE