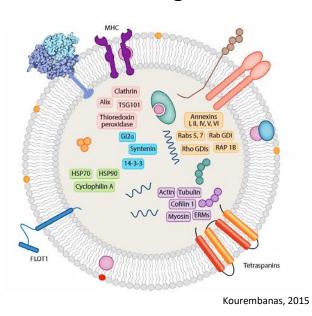


Extracellular vesicles, cancer and therapeutic applications

Domenico Albino,

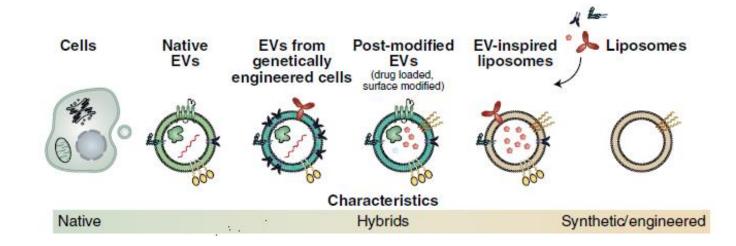
Research Associate, Prostate Cancer Biology, IOR, Bellinzona, CH

COST ACTION CA 17140 – NANO2CLINIC Working group 3 workshop Preclinical Development of Cancer Nanomedicines: State of the Art and Future Perspectives March 24-25th 2022, Institute of Oncology Research-IOR, Bellinzona, CH



Extracellular vesicles (EVs)

- EVs are <u>phospholipid bilayer-enclosed</u> vesicles secreted by all cell types.
- Generated by multivesicular bodies (MVBs) or direct budding of the plasma membrane.
- Biologic function: cell-to-cell communication both in physiological and pathological conditions.
- Clinical applications of EVs:
 - Biomarkers,
 - Drug delivery vehicles.


DNAGenomic and mitochondrialRNAmRNA, tRNA, rRNA, miRNA, small nuclear and small
nucleolar RNAProteinsBiogenesis-related proteins, vesicular proteins and
cell-type specific proteinsLipidsCholesterol, sphingomyelin, glycosphingolipids,
phosphatidylserineSignaling
moleculesALIX, syntenin, cofilin, annexin, RAB, cytokines

EVs cargo

Native EVs

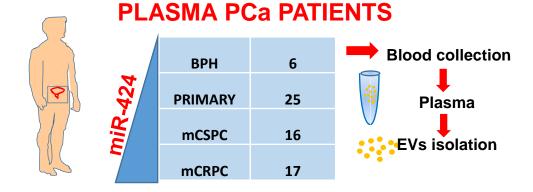
Advantages of natural EVs

- Cross the blood-brain barrier (BBB)
- Have long lasting effects (4-5 days) after administration
- Enter bloodstream

EVs can be used as a carrier of biological and therapeutic cargoes

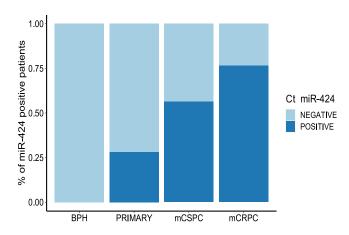
Examples from our research

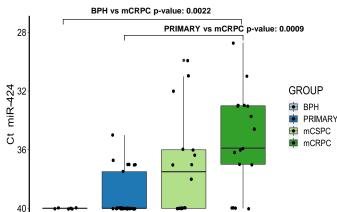
Check for updates


https://doi.org/10.1038/s42003-020-01642-5 OPEN

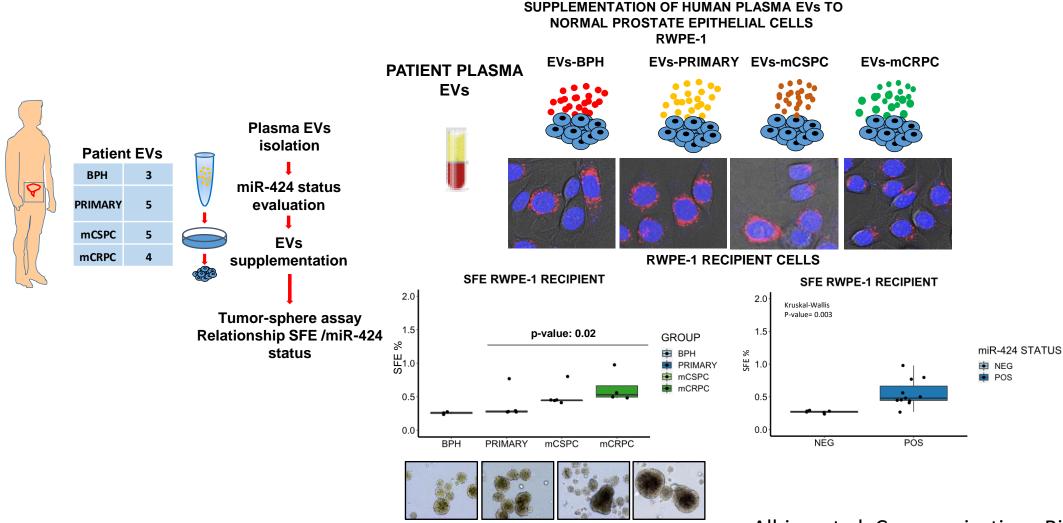
ARTICLE

Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer

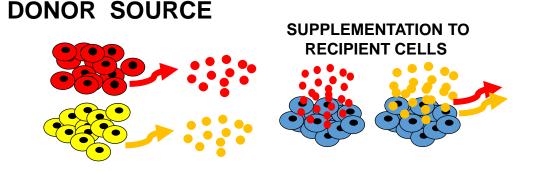

Domenico Albino¹, Martina Falcione¹, Valeria Uboldi¹, Dada Oluwaseyi Temilola⁹, Giada Sandrini⁹, Jessica Merulla¹, Gianluca Civenn¹, Aleksandra Kokanovic¹, Alessandra Stürchler¹, Dheeraj Shinde¹, Mariangela Garofalo³, Ricardo Pereira Mestre⁹, Vera Constâncio⁵, Martha Wium⁹, Jacopo Burrello⁶, Nicolò Baranzin², Annalisa Grimaldi⁷, Jean-Philippe Theurillat¹, Daniela Bossi¹, Lucio Barile⁶, Rui M. Henrique^{5,8,9}, Carmen Jeronimo⁶, ^{5,8,9}, Luiz Fernando Zerbini⁹, Carlo V. Catapano¹ & Giuseppina M. Carbone⁹, ¹⁸⁸


EVs can be isolated from plasma and their cargo evaluated

PLASMA EVs


mCSPC

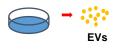
mCRPC


BPH

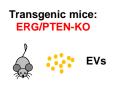
PRIMARY

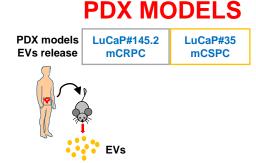
EVs are released in the circulation and impact on the phenotype of recipient cells

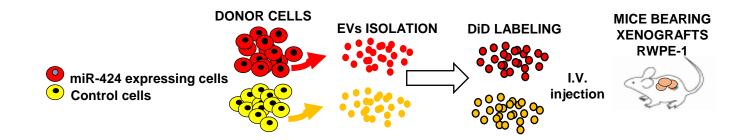
EVs from several sources significantly impact on the recipient cell phenotype

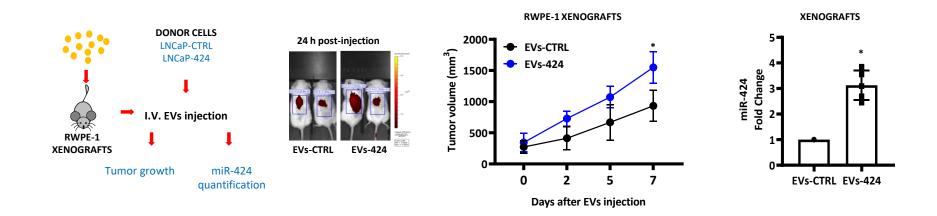

IMPACT ON RECIPIENT CELL PHENOTYPE

CANCER STEM CELL PROPERTIES


TUMOR INITIATION


EVs DONOR SOURCES




GEMM MODELS

Efficient oncogenic transfer mediated by systemic delivery of EVs in mice

Thank you!

