Zhang Y , Lin Y , Hou Q , Liu X , Pricl S , Peng L , Xia Y. Org Biomol Chem. 2020;18:9689-9699.
Nucleoside analogues represent an important class of drug candidates. With the aim of searching for novel bioactive nucleosides, we developed an efficient synthetic way to construct a series of aryl 1,2,3-triazole acyclic C-azanucleosides via Huisgen 1,3-dipolar cycloaddition. The aryl 1,2,3-triazole motifs within these azanucleosides showed coplanar features, suggesting they could act as surrogates for large planar aromatic systems or nucleobases. Moreover, several aryltriazole acyclic C-azanucleosides bearing long alkyl chains exhibited potent antiproliferative activity against various cancer cell lines via induction of apoptosis. Most interestingly, the lead compound significantly down-regulated the key proteins involved in the heat shock response pathway, representing the first anticancer acyclic azanucleoside with such a mode of action. These novel aryl 1,2,3-triazole cyclic C-azanucleosides therefore serve as promising paradigms for further exploring anticancer drug candidates. Copyright (C) 2020 The Royal Society of Chemistry